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It is shown that, under weak assumptions, nonlinear L,-approximation problems
generally have unbounded numbers of local best approximations. This includes the
rational and the exponential families of approximating functions. In addition, for a
certain class of approximating families, we construct functions with three global
best approximations. The results apply. for instance, to exponential and rational
approximating families with one nonlinear parameter. Finally, we extend results of
Spiess and Braess on the finiteness of the number of local best approximations by
rational functions. ¢ 1987 Academic Press. Inc.

1. GENERAL NONLINEAR L,-APPROXIMATION

In this section we show that general nonlinear L,-approximation
problems have unbounded numbers of local best approximations. This
extends results of Wolfe [7] for the special case of ordinary rational
functions. We consider the Hilbert space H:=L,[—1,1]. Let S be an
open subset of R and 4 a twice Fréchet-differentiable map from S to H.
Thus, clements of H are to be approximated by eclements of A(S)=
{A(x)|x€S}. The first and second Fréchet-derivative of a transformation g
at a point x will be denoted by g'(x, ") and g"(x, -, - ) respectively. For a
function f out of H the functional N/{x) from S to R is defined by N{x) :=
| A(x)— f|I°. Then this functional is twice differentiable with respect to x.
The span of vectors x,.., x,, is denoted by {x,,..., x,,>.

In general a local minimum of N () at x, does not imply that 4(x,) is a
local best approximation to f with respect to A(S). For this, some further
conditions must be met, especially A(x,} must be normal. This condition is
even sufficient in most cases. The interested reader may consult Wolfe’s
paper [7] for further details. He defines normality as follows:

* This paper summarizes the author’s thesis [4].
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DEFINITION. A point A(x)e A(S) is called normal if 4 ' exists on a
neighborhood of A4(x), is continuous at 4{x), and 4'(x, -} is one-to-one.

Now we want to show how for a given mapping A with certain proper-
ties one can get a result of the following general structure:

1.1. The number of isolated local best approximations to a function
fe H cannot be bounded independently of f: For any natural number ¢
there are distinct parameters P,e S, v=1,.., ¢ and a function fe H such
that A(P,),..., A(P,) are isolated, local best approximations to-f with
respect to the approximating family A(S).

We need a lemma of Wolfe [7],

1.2. LEMMA Let M., i=1, 2,.. be a sequence of finite dimensional sub-
spaces of a Hilbert space H such that

M,-n(izl M,>=<0> (1.3)

j=1

for all i=2,3,... Let r.e M, be given for i=1,2,.. where r;#0. Then for
cach ne N,

L=\ (ri+M"

i=1
is nonvoid.

We use this to show

1.4. LEMMA. Let P € S, v=1,.., g be parameters, satisfying A(P,)#0 for
all v=1,..,q. Let M, be linear finite dimensional subspaces of L,[ —1, 1].
Suppose that A'(P,, ") is injective and

A(P,), A(P,, h), A"(P,,h,h)e M, (1.5)

forv=1,.., q, and all he R, Then, if the M, satisfy (1.3), there is a function
fe L[ —1, 1] such that the functional N{-) has isolated local minima at the
points Py,.., P,.

Proof. Under the above hypotheses L,:=(¢_, (4(P;)+ M) is not
empty. Let /' be a function in L,. Then for any he R” and any v=1,.., ¢ we
obtain

INKP,, hy=(A(P,)— f, A'(P,, h))=0,
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since / has a representation f=A(P,)—g,, with (g,, 4'(P,, h))=0.
Furthermore, for any he R" and any v =1,.., ¢, we have

INJ(Py b k)= APy P+ (A(P) — £, A"(P, by b))

The last term vanishes since f can be written in the form /= A(P,)+¢,.
with a function ¢, that satisfies (g,, A"(P,, h, #)) =0, and the first term is
positive definite since 4'(P,) is injective.

To apply this lemma one has to find suitable subspaces M. One obvious
way is to consider the subspaces generated by A(P,), A'(P,, h), and
A"(P,, h, h). So we define for P, :=(x]..., x3,) €S the spaces M, by

' cA A
M\:<A(P»)7T—(P»)s_——‘f(l)\)“l’u:l’*M .
0x Ox, Ox

s et

These M, obviously satisfy (1.5) and we have

M M+2
d‘::dimM‘<1+M+<2>+M=< ;)

Let {w!}% | be a basis for M,. Then (1.3) will be satisfied if the functions

idi=

w’; v=1,.,¢; j=1,..4d, (1.6)

Al

are linearly independent over R.

So in general, to prove 1.1 for a given A it is sufficient to find for any ¢
certain parameters P e S, v=1,.., ¢, such that A(P,) is normal and the
functions (1.6) are linearly independent over R. This can be done in many
cascs. We exhibit some examples:

1.7. ExampLE.  Set S:=RxR*x(0,27), A(x,,x,,x3):=x,8in{x,7+ x3).
One obtains that 4'(x) is injective iff x, #0. For such parameters we have
d, =5 and the functions

W) =sin(x51 4+ x3), w} = cos(x5t + x3}),
Wi =twy, wy = twh, wl=t'w!
constitute a basis for M. If x] #0 for v=1,..., g and x} # x} for v # v, these
functions are linearly independent over R.
1.8. ExaMPLE. Set S:=R and, A(x,)=¢"""+ x,1t. A'(x,) is injective for
all x, e S and we have d,=3. A basis is given by

, ¢ . 2 N : ,
w)=te" 41, wh=re" w} = A(x)).
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Thus, the functions (1.6) are linearly independent, iff all x}, v=1,.., ¢ are
distinct.

1.9. ExampLE. Set S:=R? and A(x,, x,):=e" +x,t. Then A'(x) is
injective, iff x, #0. We obtain d, =4 and the functions

! Vo ,\‘,l v 42 .\"i‘/ Vo
, wy=te', wy=tet, wy=t

w)=e i
constitute a basis for the M. But we have M, n M, > {t). So (1.3} is not
satisfied and the above construction is not applicable. However, the dif-
ficulty in this case (and in similar ones) can be overcome by using the same
trick Braess used in [1] to prove his generalization of Wolfe’s Theorem 6
in [7]. This shall not be further amplified here.

1.10. Remark. Lemma 1.4 equally applies to the discrete case, ie., if we
take R" as the Hilbert space H. In this case ¢ can of cause not be
arbitrarily large, because (1.3) can only hold if ¢ is smaller than the dimen-
sion of H.

1.11. ExAMPLE. As an example we report without proof a result one
obtains by applying 1.4 to discrete approximation in the family 27 of
polynomial rational functions with the Euclidean norm:

Let D be a discrete set of N nodes and for O0<n<m suppose N* <
(N+m—n—1)/3m. For v=1,., N* let r,=p, /q, be rational functions in
A" (D). Suppose the r, are normal and all ¢, are of degree m. Suppose
further, that ¢, and ¢, have no common factors unless v=v. Then there
exists a function f e C(D) such that the r, for v=1,.., N* are isolated local
best approximations to f with respect to the Euclidean norm.

1.12. Remark. Note that the function fin (1.11) may not have a best

approximation in #7 (D).

1.13. Remark. 1f P, v=1.. ¢ are points from S such that the
functions (1.6} are linearly independent, one can repeat the argument in the
Hilbert space

q
Hi=@® M,cL,[-1,1].

=]

Then f can be choosen from H. It then has the form

0A A
f= Y «AP)+ Y Bu=—PI+ Y puws—a (P)
vy ispus M ! 8'\’/( lsups M o ax laxl‘
l<sv<y l<svsy

with certain real coefficients «,, f8

At
v Fvup
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2. THE RATIONAL AND EXPONENTIAL CASE

It would be desirable to formulate 1.1 more precisely, but in general
this turns out to be rather technical and tedious. So we confine ourselves
to a special case which includes general rational and exponential
approximation.

Notation. Suppose X and Y= {y,., |, respectively, are n- and m-
sets from C[—1,1]} and O is not in X. We say Y is linearly independent
over X, iff

Y ¢, =0 on [—1,1], and d.eX, x.eR

i—1

implies «;=0 for i=1,.., m.

2.1. THEOREM. Let I be a compact real interval and let s be a fixed real
number. Let the kernel 7 be defined by

5(x) {(1+(1~S},\‘)"" * for s#1;
Hx) =
e, for s=1.

Let iy and ¢, denote the constant Function 1 on I, and let {\,}"_ |, and
{9, be two systems of linearly independent functions from C(I). Define
two affine—linear functions [, and [, from R" and R™, respectively, to C[ 1]
by

]

li{x)= Z X, Q0,19

=1
L(y)= Z ety
voe= |

Using B, ;= {yeR" |1+ (1 —5) ,(y) >0}, we consider the open and convex
subset S:=R"™ x BY of R*"*"™ for a fixed natural number N. For y e B,,
set p(y):=5(l,(y)) and for cach parameter P = (x", X, le,..., yNT) €S
define the approximating function by

AP) =Y 1(x*)y(3").

k=1

Let the linear space L be defined by
L:=<o, gy, lu=0,,nv,v=0.,m).

w?

Ve ¥M)e S are given such that for w=1,.., q the functions A'(P,) are

Suppose, that  for w=1,.,9eN, certain points P, = (x.,., xV
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njective, A(P,)#0, and the functions y* '(y*) for w=1,.,q and
k =1,.., N are linearly independent over L.
Then there exists a function f from

@ Ly '(yh)c Ly),

w,k

such that the functional NA-) has isolated local minima at the points
PP

q*

Before we prove this theorem, we shall consider some examples.

2.2. ExaMPLE (Approximation with Rational Functions). We show
how to get Wolfe’s theorem [7, Theorem 6] from 2.1. We get s=2, ¢,,
=0, N=1, n=nyop+1, M=myqe, @, =1""", y,= —1". We get B, =
{yeR"|ZM_ y,t"+1>0} and for P=(x,,., X1, Vs V,y) WE Obtain

Xyt xpt4 o+ x,0m !
L+ ypt4 - +y,t7

apn— 1
m

A(P)=

For L we get
L: <t“71’va|ﬂ= 1#---9 n;v, V=0,..., m>:‘%m+n -1

and we have y* " '(y)=(1+y,t+ - +y,,t™) . The prepositions of 2.1
are surely satisfied if A(P,) is normal for w = 1,.., g (then 4'(P,) is injec-
tive), the denominators are relatively prime and have full degree m, and if
L contains no polynomial of degree>3m. This means that
2m+n—1<3m. These are exactly the premises that Wolfe needed for his
theorem. Moreover, we can say something about the form of f: If the Q,
are the given denominator polynomials, then f can be chosen from

7*1 '%IV!‘F!I /Q

2.3. ExampLE (Exponential Approximation). We set s=n=m=1,
o, =1, ¢y=id;, c;,=c,=01t0 get S=R"XR", L =2 and

N k
— z xkeyl
k=1

If all x,#0 and all y, are distinct, then 4'(P) is injective. The functions
P2 ()= e”' are linearly independent over L =2, if the parameters y*
are distinct for k=1,., Nand w=1,.., q.

24. ExampPLE. Set I=[a,b], 0<a<b<ow, s=m=n=N=1, ¢, =1,
Y, =Int, S=RxR, L={1,In¢, (In #)*) and

A(x, y)=xt*
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A'(x, y) is injective, iff x does not vanish. The functions 3%

linearly independent over L, iff all v, are pairwise distinct.

"yk )= 1" are
2.5. Proof of 2.1. We consider the linear subspaces

=@ Ly '0h)
k=1

of the Hilbert space H:= @®¢ _, M. It follows from the linear indepen-
dence of the functions 7>~ '(y k) over L that these sums are direct and the
M, satisfy condition (1.3‘). In order to apply 1.4, we need to show that

h), A"(P,,,h,hye M

for all e R¥" ) We have
M, =@, YY" "OET<kSNO<pu<n 0<y, v<m).

Then 0 # A(P,,)e M,,. Corresponding to P :=(x',.., x", y'.., ") we also
partition s according to h:=(u',.., u™, ¢'..., v") and define

[ X):=0(xX)— @4

H(y)i=6h0y) -y,

LG+ 1) 305+ 05 — 3 L) (%)

-1

3

= Z (ll(xk)‘*'[n(“k))}7</2(}’A)+[z(l’k)> Z ll(v\’k)”)’()’k)
=1 K

> (/l(xk)+iltuk)><y(,v*)+~i/(/3(y"))/}(v“)

.
+5 (L) L) + O > 2 ")

k=1

N N
=Z</1( )T (LM LY + Tty y(0F )

k =

S 1 .
+ Z <r (LN L) Lu k)+§11(xk)f"(lz(,l’k))/z(le)z>

k=1

+O0(|A1%)
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Because of the identities

d d \
() =), 25 ) = 9™ ()
we obtain
‘; ( )fz(vk)+}'(,1'A)11(uA)>
A"(P, b, h) = Z( k)fg(v‘)+§>’2‘ '(L‘)fz(vk)“>

From this the theorem follows immediately.

3. NONUNIQUENESS OF GLOBAL BEST APPROXIMATIONS

Several authors have published examples for functions with more than
one global best L,-approximation (g.b.a.). In the approximation with
ordinary rational functions on a compact real interval, one uses a sym-
metry argument and the fact, that best approximations are normal [2]. We
shall give a more general argument that works for nonsymmetric cases too,
and gives three best approximations in symmetric cases.

Consider the L,-approximation in #7[—1,1]. Local best
approximations to functions /¢ %"~ are always normal [3] and the sub-

m—1

set of normal functions in #7, is not connected for n = 0.

3.1 THEOREM. Let Cy, and C, be two connected components of
ANRT L. Suppose fo and [y are functions in L,[ —1, 1] such that f, has a
gba. in Cy and f, has a gba. in C,. Let H.[0,1]->L,[ -1 1]\
R L[ =1, 1] be a continuous curve from f, to f,. Then there exists
+*e [0, 1], such that H(A*) has two global best approximations in R”,.

Proof. Let C, be the set of normal functions from £/, that are neither
in Cy nor in C,. Let

E(2) = inf [H(A)—r]|

m

be the distance from H(1) to #7, and

E(4):=inf [H(A)—rl, i=0,1,2

re C;
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be the distance from H(4) to C,. The functions E, E; are continuous on
[0, 1] and for all A€ [0, 1] we have

min{Ey(4), E\(1), E+(7)} = E(4).

For /=0 the minimum is attained at E, and for A=1 at E,. Thus there
exists A*e [0, 1] with E(i*)=E(A*)=E(41*) and j#k Since best
approximations are normal, the corresponding best approximations must
lie in C; and (.

Using this result we can eliminate the restriction to odd r in [2,
Theorem 4.1]:

3.2. THEOREM. Let nz=20, m=1. To posess only one local best
approximation in A7 —1, 1] is no generic property in L, —1,1]}.

For the rest of this chapter we use /:=[—1,1], S:=(—1,1). Let
u: Sx I — R™ be a continnuous kernel function, positive on S x I, such that
zero is the only function orthogonal to every function in u(S, -). Let ¢,,
f:I-RY i=1,2..,N, be linearly independent functions on I such that
¢,(1) f(1) # 0 on I We define the approximating family by a mapping
A: SxRY - C[I] where

A(b, X) = u(b7 ’ ) i Xi¢1"

i=1

For simplicity (although we do not need that much) we require that
b A(b, ) i1s injective and that any continuous function f on [ has a best
L,-approximation in A(Sx R™).

3.3. THEOREM. Under the assumptions stated above, define for any ieR”
a continuous function f, by

fi= m (f— i /1,.¢,.).

i1
Then
(i) There exists a vector 1eRY such that f; has two global best
approximations in A(S x R™).
(1) If u(b, tY=u(—b, —1) and the functions f, ¢, are even, then there
exists a vector 7€ R™ such that fy has three global best approximations in
A(SxR™).

Proof. 1. Zero is not a best approximation to any f # 0 because
otherwise w(t) :=lltu(b, -) ¢, — f|* would, for all be S, have a minimum at
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r=0. But then ¢,/ would be orthogonal to all u(b, ‘), b€ S, contradicting
the assumption that ¢,/ does not vanish identically and that zero is the
only function orthogonal to all u(b, ), be S.

2. For beS let A*(b) be the solution of the linear system
(u(h, ") ¢;, fix)) =0, j=1,.., N. Then i* exists, is uniquely determined and
depends continuously on b, because the matrix of this system is a Gramian
matrix of the linearly independent functions ¢, with respect to the positive
weight function u(b, ). For any be S the minimum of [A(b, x)— f;u)l°
where x ranges over R" is attained for x =0.

3. Suppose that for any AeR” there exists exactly one b*(1)e S,
such that A(b*(1), x*) is the g.b.a. to /,. Then b* depends continuously on
4. But then 5*(R") is contained in a compact subinterval of S. To see this,
assume that there exists a sequence {1} of vectors in R" such that b*(1")
converges to +1 or —1 as v goes to infinity. By choosing an appropriate
subsequence if necessary, we may suppose that A*/(1 + ||A%]) converges to a
vector £e R™. If | "] converges to ge Ru {co}, then f,. converges to the
continuous function

Zi¢i

1

[ = +

i

HM*{

S
l+g¢q
which does not vanish identically on /. Thus f,_ has a unique gb.a.
A(b™, x*) with b* € S and x™ #0.

4. Thus, if the g.b.a. to any f; is unique, the mapping b*- 1* is con-
tinuous and maps S into a compact subset of S. It follows that 5* 4* has a
fixed point heS. By construction zero would be a gb.a. to fy.;. This
function, however, does not vanish identically, and this is a contradiction
to part 1 of this proof. Then b* does not depend continuously on 4 and so
there exists a Z€ R” such that f; has two g.b.a. in 4(SxRY).

5. To prove (ii) we note that under the symmetry assumptions made,
A(b, x)is a g.b.a. to f; if and only if 4(—b, x) is also a g.b.a. to f;. Now we
repeat the arguments 1 to 4 but restrict b to the interval [0, 1). It follows
that there is a 4 R”, such that f7 has two g.b.a. in 4([0, 1) x RY). One of
them might have b*(1) =0, but the other one can be paired with a gb.a. in
A((—1,0)xRM).

Obviously we can take for u(b, t) the kernels ¢” and (1 —b1) " ' to obtain
results for exponential or rational approximation and thus answering
questions of Braess [1,2].

34. ExaMpLE. The following example has already been considered by

Lamprecht [5]; he did however not give a rigorous proof. We consider
L»-approximation in #% —1,1] and choose f(1)=¢°, ¢,(1)=1. The

640 51 1-3
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theorem implies that there exists 4 e R, such that f5=1r’— 1 has three g.b.a.
in A9 —1, 1]. A closer analysis shows that Ze (4, 1).

4. THE NUMBER OF CRITICAL POINTS IN RATIONAL L,-APPROXIMATION

It is still an open problem whether for some fe L,[ — 1, 1] the function
|/ — -||I* has infinitely many (local) minima in #”,. Finiteness was reported
for the casc m=1 in [7], but this information was based on a linguistic
translation error of a result by Spiess [6]. We parametrize 2 —1, 1] by
a-u(b, ) where u(b, 1) :=/(1—5b7)2 (1+bt) " is the normalized kernel.
Spiess proved that for fel,[—1,1] the critical points of N/a, b):
la-u(b, )— f(-)|” cannot accumulate at points (a*, b*) with b*e(—1,1).

Later Braess [ 1] showed that the number of critical points in #Y is finite
if f'is continuous on [ —1, 1] and f(1)-f(—1) is nonzero. In this section a
much stronger result is obtained.

With the above parametrisation (a, ») is critical iff

a—{(u(b), f)=0 and a (u'(b), f)=0.

We can restrict the computations to the case ¢ #0 and thus have to prove
that («'(b), /) has only finitely many zeros for be (—1, 1). We obtain

Ju —1 b+t

= (b 1)=

ab S2ST=07 (1 +bt)?

Thus the possible values for » are the zeros of F: (—1, 1) — R, defined by

b 1+b
Fb = | 0

4.1. LeMMA. Let f be a continuous function on [ —1,1]. Suppose
f(=1)Y#0 or there exists a constant d € (0, 1) such that f is monotonous in
the interval [ —1, —1+3]. Then F: (—1,1) - R, defined by

t+b

ol
F(b):=d|rlj(t)(—1—+b7)2dt

has only finitely many zeros in the interval (0, 1).

Proof. We may suppose f(— 1)=0 because the other case is covered by
the result of Braess in [ 1] cited above. Fis analytic on (— 1, 1). Thus, if the
zeros of F had an accumulation point in (—1, 1), F would be identically
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zero. This cannot happen for fe L,[ —1, 1] as has been shown by Spiess in
[6]. Suppose the zeros accumulate at 1. Then, for each n=0,1,.. a
sequence b7, i =0, 1,... exists such that 7 — 1 for i = a0 and F"(h"}=0 for
all i, n=0. Let K(b, 1) denote the kernel

t+b
Kb, 1) :=—.
(b, 1) (1 b1y
For n 20 induction gives
0" T 1o+ bt —
K(b [) ¢ (h 1):( ])nn ((I’l+ ) + i’l)

b (14 b1y 2
We now split £")(b) into two terms
ro Lo

Fo=(] ] YUk

and estimate roughly:

|

oo [0 ]

I ko

<Ifl. M Kbnd

Il 10,17

Sl -2 sup - sup  [K,(h, 1)

be(01) re[—1+35,1]
L2 f1 . 1K (1, —146)]
(n+ )!
<2 I
Thus we have

1 C 1S
R ke a

—1

FUby= =20 11,

Now, K, (b, —1)= —(n!/(1—=b)""") is less than zero and K, (b, ) has
exactly one zero in (—1, 0), namely

1
z,(b) = —-2n—+2(b+\/(>2n+ 12— (1—b)).

We find z,(b) » —1 for b - 1 or n > 0c0. We may suppose, that f increases
monotonously on [ —1, —1,+87]. Thus for z,(b)e(—1, — 1+ ) we get

E +df(z) K, (b, 1) di = f(z,(b)) jf}' e K, (b, 1) dt.
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The integral can asymptotically be estimated by
146 (’}”
] K,,(b,t)dr:;q—h?{ln(lAb+5b)~ln(l~b)
b :

=0((1=h) ")

ob(1+b)]
l—b+5b}

for fixed n>=1 and h— 1. So we obtain

L (1)
F(”)(b)Z —2””'/ ( )

(5n+2

+/(z, (b)) OU(1 =b) ")

for b — 1. Since F"(b7)=0 we must have

_, Lo n+ 1)
Sz, (7)o by "y <20ifl. “2%

for i— oc. This implies f(z,(h))<O((1 —h) ") for b— 1. Because of
2 (P> =1+ (1 —=b)/(2n+2) this means we have f(1)=O0((l1 +1)") for

t —» —1. So f(1) vanishes faster than any polynomial for - —1. But then

rolto
Cpi= lim /([) Kn(ha [) dt

bt v g

exists for all # and this limit must be smaller than 2| /]|, (n+ 1)!/0" ' We
now show that under these circumstances F can be analytically continued
beyond h=1 and we again obtain a contradiction to the result of Spiess.
We expand F into a series around =1 and show that this series has a
positive radius of convergence:

ks b—'l H ‘0] )
F(hy:=Y b= 1) ~| K. (1, 1) f(1) dr.

=1

n!

The coefficients can be estimated by

-

P . A + 1)
T e, SR
1 1 v t o

Thus the series has radius of convergence at least 9.
Likewise F has only finitely many zeros in (—1,0), provided f is
monotonous at the right end of [ —1, 17]. Thus we obtain

4.72. THEOREM. Let f be a continuous function on [ —1, 1]. Suppose that
for x = +1 and x= —1 either f(x)#0 or there exists a neighbourhood U(x)
of X such that [ is monotonous in U(x)n[—1 1]. Then the function
|/ — -1I* has only finitely many critical points in AS.
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