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It is shown that, under weak assumptions, nonlinear L 2-approximation problems

generally have unbounded numbers of local best approximations, This includes the
rational and the exponential families of approximating functions. In addition, for a
certain class of approximating families, we construct functions with three global

best approximations, The results apply, for instancc, to exponential and rational
approximating families with onc nonlinear parameter. Finally, we extend results of

Spiess and Braess on the finiteness of the number of local best approximations by
rational functions, ,( 19K7 Academic Press. Inc

1. GENERAL NONLINEAR L 2"ApPROXIMATION

In this section we show that general nonlinear Lc-approximation
problems have unbounded numbers of local best approximations. This
extends results of Wolfe [7] for the special case of ordinary rational
functions. We consider the Hilbert space Ii:= L 2 [ -1, 1]. Let S be an
open subset of R M and A a twice Frechet-differentiable map from S to Ii.
Thus, elements of Ii are to be approximated by elements of A{S) =

{A (x) IXES}. The first and second Frechet-derivative of a transformation g
at a point x will be denoted by g'(x, .) and g"(x, " .) respectively. For a
functionlout of Ii the functional N f{ x) from S to R is defined by N f{ x) :=
IIA(x) - ff. Then this functional is twice differentiable with respect to x.
The span of vectors XI"'" x" is denoted by <XI"", x,,).

In general a local minimum of Nt{') at X o does not imply that A(xo) is a
local best approximation to f with respect to A(S). For this, some further
conditions must be met, especially A(xo) must be normal. This condition is
even sufficient in most cases. The interested reader may consult Wolfe's
paper [7] for further details. He defines normality as follows:

* This paper summarizes the author's thesis [4 J
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DEFINITION. A point A(x) E A(S) is called normal if A I exists on a
neighborhood of A(x), is continuous at A(x), and A'(x,') is one-to-one.

Now we want to show how for a given mapping A with certain proper
ties one can get a result of the following general structure:

1.1. The number of isolated local best approximations to a function
fE H cannot be bounded independently of f: For any natural number q
there are distinct parameters P" E S, V = I,... , q and a function f E H such
that A(P I ), ••• , A(P,) are isolated, local best approximations tof with
respect to the approximating family A(S).

We need a lemma of Wolfe [7J,

1.2. LEMMA Let M i' i = 1, 2, ... be a sequence of finite dimensional sub
,IJ)(I('es of a Hilbert space H such that

(I.3 )

for all i = 2, 3,.... Let r, EM, be given j()r i = 1, 2, ... where r, =I- 0. Then jc)r
each n E N,

"
L" := n (r i + M/)

j...:..:.: I

is nonvoid.

We use this to show

1.4. LEMMA. Let P" E S, V = 1,..., q be parameters, satisfying A(P,,) =I- Ofor
all v= 1, ... , q. Let M" he linear finite dimensional suhspaces of L 2 [ - I, 1].
Suppose that A'(P.. , .) is injective and

A(P,,), A'(P", h), A"(P", h, h) EM,. (1.5 )

for v = 1,..., q, and all hER M. Then, if the M" satis/v (1.3), there is a function
f E L 2 [ - 1, 1] such that the functional N f ( . ) has isolated local minima at the

points PI"'" P".

Proof Under the above hypotheses L,,:= nf~ I (A(P i ) + M/") is not
empty. Letfbe a function in L". Then for any hER M and any V= 1, ... , q we
obtain

~ N/(P", h) = (A(P.) - 1, A '(P,., h)) = 0,
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since / has a representation /=A(P..)-gv, with (g"A'(Pv,h))=O.
Furthermore, for any hE R M and any v = I, ... , q, we have

~N;'(P" h, h) = IIA'(P" hW + (A(P,) ~ j; A"(P" h, h)).

The last term vanishes since/can be written in the form/=A(P,)+g"
with a function g, that satisfies (g" A II (P" h, h)) = 0, and the first term is
positive definite since A'(P v ) is injective.

To apply this lemma one has to find suitable subspaces M V" One obvious
way is to consider the subspaces generated by A(P,), A'(P" h), and
A"(P,., h, h). So we define for P,:= (x~, ... , XM)ES the spaces M v by

These M, obviously satisfy (1.5) and we have

. (M) (M+2)eI,:= dim M, ~ I + M+ 2 I + M= 2 .

Let {w;tl~ 1 be a basis for M,. Then (1.3) will be satisfied if the functions

1'= I, ... , q; j= I, ... , d,. (1.6)

are linearly independent over R.
So in general, to prove 1.1 for a given A it is sufficient to find for any q

certain parameters Pl' E S, I' = I, ..., q, such that A(P..) is normal and the
functions (1.6) are linearly independent over R. This can be done in many
cases. We exhibit some examples:

1.7. EXAMPLE. Set S:=R x R + x (O,2n), A(x 1,X2 ,X3 ):=X 1sin(x 2 t + x 3 ).

One obtains that A '(x) is injective iff x I # 0. For such parameters we have
d" = 5 and the functions

w~ = cos(x~ t + x"),

w"=tw;, w~ = tw~,

constitute a basis for M ,.. If x; # °for v = 1,... , q and x; # x~ for I' # v, these
functions are linearly independent over R.

1.8. EXAMPLE. Set S := R and, A (x I) = e'I t + Xl t. A '(x 1) is injective for
all XI E S and we have d,. = 3. A basis is given by

0'
w~ = re'it,
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Thus, the functions (1.6) are linearly independent, iff all x;, v = 1,..., q are
distinct.

1.9. EXAMPLE. Set S:= R2 and A(x" X2) := eXI! + X2t. Then A'(x) IS

injective, iff x I # O. We obtain d,. = 4 and the functions

w~=t

constitute a basis for the M,.. But we have M,nMv~ (t). So (1.3) is not
satisfied and the above construction is not applicable. However, the dif
ficulty in this case (and in similar ones) can be overcome by using the same
trick Braess used in [I] to prove his generalization of Wolfe's Theorem 6
in [7]. This shall not be further amplified here.

1.10. Remark. Lemma 1.4 equally applies to the discrete case, i.e., if we
take R N as the Hilbert space H. In this case q can of cause not be
arbitrarily large, because (1.3) can only hold if q is smaller than the dimen
sion of H.

1.11. EXAMPLE. As an example we report without proof a result one
obtains by applying 1.4 to discrete approximation in the family ;11;;, of
polynomial rational functions with the Euclidean norm:

Let D be a discrete set of N nodes and for 0:( n < m suppose N*:(

(N + /11- n - I )/3m. For I' = I, ... , N* let r,_ = p,./ql' be rational functions in
J/I;;,(D). Suppose the r, are normal and all ql' are of degree m. Suppose
further, that q,. and qv have no common factors unless v = v. Then there
exists a functionlE C(D) such that the rl' for v = I, ... , N* are isolated local
best approximations to f with respect to the Euclidean norm.

1.12. Remark. Note that the function f in (1.11) may not have a best
approximation in .:1i;;,(D).

1.13. Remark. If P,., v= I, ... , q are points from S such that the
functions ( 1.6) are linearly independent, one can repeat the argument in the
Hilbert space

'I

H:= ffi MI' C L 2 [ ~ I, I].
1'= I

Then f can be choosen from H. It then has the form

f=

with certain real coefficients ex,., [3'1" "'I''''
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2. THE RATIONAL AND EXPONENTIAL CASE

It would be desirable to formulate 1.1 more precisely, but in general
this turns out to be rather technical and tedious. So we confine ourselves
to a special case which includes general rational and exponential
approximation.

Notation. Suppose X and Y = {tjJ I, ... , tjJ m}, respectively, are n- and m
sets from C[ - I, I J and 0 is not in X. We say Y is linearly independent
over X, iff

i -- ]

implies 'l., = 0 for i = I, ... , m.

and r/J,EX,'l.i ER

2.1. THEOREM. Let f he a compact real interval and lets he aflxed real
numher. Let the kernel 'y he defined hy

for .1'=1-1;

for .I' = I.

Let tjJ 0 and CfJo denote the constant Function I on f, and let {tjJ v} ;:'~ I' and
{ CfJ I'};~ ~ 1 he two systems ollinearly independent functions from C(I). Define
two affine-linear functions II and 12 from R" and Rm

, respectively, to C[JJ
hy

11

IJ!x) = L X11CfJ1' + C I CfJo
jl-= 1

12(Y)= L y"tjJ,+C 2tjJo·
\'= I

Using B, := {y E Rm II + (l - .1') 12(Y) > O}, we consider the open and convex
suhset S:= R"N x B;v of RN

(1l em) for a fIxed natural numher N. For y EB"
_ j I VI 1 T vT

set y(y) := y(l2(y)) and for each parameter P:= (x ,..., x ,y ,..., Y ) E S
define the approximating function hy

N

A(P):= L lj(x') y(y').
,~I

Let the linear space L he defined by

Suppose, that for (J) = 1,... , q E N, certain points P",:= (xi", ... , x:~,
YL, ..., YZ) E S are given such that for OJ = 1,... , q the functions A'(P,,,) arc
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injective, A(P(J ""' 0, and the functions y2s I(Y~J for w = I, ... , q and
k = I, ... , N are linearly independent over L.

Then there exists a function f from

EB L· y2s l(y~J C L 2(1),
w,k

such that the functional Nt{') has isolated local minima at the points

P1,···,P".

Before we prove this theorem, we shall consider some examples.

2.2. EXAMPLE (Approximation with Rational Functions). We show
how to get Wolfe's theorem [7, Theorem 6J from 2.1. We get s = 2, c 1 ,

c2=0, N= I, n=nWo1fe+ I, m=mWo1fe' ({J1l=t ll
-

l
, t/Jv= _tV. We get Bs=

[Y E Rill IL~~l~ I yvt' + I > O} and for P = (x 1, ... , x,,, Y I"'" Ym) we obtain

A(P)=x 1 +X2t+ +x,/' I E&i'~,-l
1 + Y I t + + Y",tm

For L we get

L = <t ll
- It"t V I J.1 = I, ..., n; v, v = 0, ..., m) = ~m+" I

and we have y2s1(y)=(I+y 1t+ ... +Ymtm) 3. The prepositions of 2.1
are surely satisfied if A(Pw) is normal for w = I, ... , q (then A'(Pw) is injec
tive), the denominators are relatively prime and have full degree m, and if
L contains no polynomial of degree ~ 3m. This means that
2m + n - 1< 3m. These are exactly the premises that WoUe needed for his
theorem. Moreover, we can say something about the form of f: If the Q i

are the given denominator polynomials, then f can be chosen from

EBr~ tC~m+n dim·

2.3. EXAMPLE (Exponential Approximation). We set s=n=m= I,
({Jl == I, t/J=id /, C1=C2=0 to get S=RNxR N, L=glJ2 and

N

A(P) = L xke ,k{

k=l

If all X!I ""' °and all Yv are distinct, then A'(P) is injective. The functions
yZs I (y~) = eY~/ are linearly independent over L = ~, if the parameters Y7u
are distinct for k = I, ..., Nand w = I, ... , q.

2.4. EXAMPLE. Set I=[a,bJ, O<a<b<oo, s=m=n=N=I, ({Jj==l,
t/Jl=lnt, S=RxR, L=<I,lnt,(lnt)2) and

A(x, y)=xt\



60 IMMO DIENER

A'(x, y) is injective, iff x does not vanish. The functions I(y~,l = {I" are
linearly independent over L, iff all y", are pairwise distinct.

2.5. Proof of 2.1. We consider the linear subspaces

:V

M,) := EB L· I(y~»)
k ~ I

of the Hilbert space H:= EB;~) I MOJ' It follows from the linear indepen
dence of the functions /' I (y~») over L that these sums are direct and the
M", satisfy condition (1.3). In order to apply lA, we need to show that

A(P",), A'(P"" h), AN(P"" h, h)E M",

for all hERN1n+m j
• We have

Then OicA(P",)EM",. Corresponding to P:=(xl, ... ,XN
, l, ... ,yi\) we also

partition h according to h:= (u l,... , UN, 1,1, ... , UN) and define

[I(X) := II(x) - C I CPo

[2(y) := 12(y) - c2i/JO'

Then

N /\/

A(P+h)~A(P)= 2.: Ij(Xk+Uk)}'(/+I/)- 2.: II(xk)Y(l)
k ~ I k ~ I

= f (/,(Xk)+[I(Uk));(/2(/)+[2(Vk))- f II(Xk)}'U,k)
k ~ I k I

= JI (/1(Xk)+[I(Uk ))(y(yk)+?U2(yk)) [2(V k)

I ' ) ,\
+"2 f'(/2(yk)) 12(V k)2 + 0(11[/iI 3

) - k~1 II(xk) '/(J,k)

N ( \
= 2.: I((xk) f(/2(/)) [2(Uk) + [duk) }'(yk))

k j

N( ,,1 ' k)
+ k~' f(/2(yk)) 12(Vk) 1,(uk)+"2 II(Xk) ,},,(/kvk)) 12(v)2

+ 0(llhI1 2
).
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Because of the identities

d d2

- Y(x) = f(x), -2 Y(x) = Sy2s- I(X)
dx dx

we obtain

A'(P, h) = k~1 (t1(Xk ) y(yk) ~(Vk) + y(yk) [1(U k ))

A"(P, h, h) = k~1 (y'(yk) [duk ) [2(V k )+~ y2\ I(yk) [2(V k )2).

From this the theorem follows immediately.

3. NONUNIQUENESS OF GLOBAL BEST ApPROXIMATIONS

61

Several authors have published examples for functions with more than
one global best L 2-approximation (g.b.a.). In the approximation with
ordinary rational functions on a compact real interval, one uses a sym
metry argument and the fact, that best approximations are normal [2]. We
shall give a more general argument that works for nonsymmetric cases too,
and gives three best approximations in symmetric cases.

Consider the L 2-approximation in ~~, [ - 1, 1]. Local best
approximations to functions f ~ _~;~~\ are always normal [3 J and the sub
set of normal functions in 211~, is not connected for n ~ 0.

3.1. THEOREM. Let Ca and C I be two connected components of
,~;;,\.'~;;, II' Suppose fa andfl are functions in L 2 [ - I, I J such that f;) has a
g.b.a. in Ca and fl has a g.b.a. in C I _ Let H: [0, I] ---+ L 2 [ --I, I J\
:Jf;;, II [ - I, I] be a continuous curve from fa to fl' Then there exists
i.* EO [0,1], such that H(l*) has two global best approximations in :JJl':".

Proof Let C2 be the set of normal functions from ~':" that are neither
in Ca nor in C I . Let

E(A):= inf
n

IIH(}.) ~ rll
r E.Jfm

be the distance from H(A) to ~':" and

Ej(A) := inf IIH(}.) - rll,
rE c/

i = 0, 1,2
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be the distance from H(A) to C;. The functions E, E; are continuous on
[0, 1] and for all ), E [0, 1] we have

min{EoU), E1U), E2U)} =E(A).

For). =°the minimum is attained at Eo and for A= 1 at E 1 • Thus there
exists ). * E [0, 1] with Ep*) = Ek(A *) = E(A *) and j i= k. Since best
approximations are normal, the corresponding best approximations must
lie in Cj and Ck •

Using this result we can eliminate the restriction to odd r in [2,
Theorem 4.1]:

3.2. THEOREM. Let n;? 0, m;? I. To posess only one local best
approximation in .~;:, [ - 1, 1] is no generic property in L 2 [ - 1, 1].

For the rest of this chapter we use 1:= [ - I, I], S:= ( - I, I). Let
u: S x 1---+ R + be a continnuous kernel function, positive on S x I, such that
zero is the only function orthogonal to every function in u(S, '). Let rP;,
f: 1---+ R IV, i = 1, 2, ..., N, be linearly independent functions on I such that
rP,(t)f(t) i °on 1. We define the approximating family by a mapping
A: Sx R IV

---+ C[I] where

IV

A(b, x) := u(b,') L Xi~;'
i -= I

For simplicity (although we do not need that much) we require that
b f---+ A(b, .) is injective and that any continuous function f on I has a best
L2-approximation in A(S x R IV

).

3.3. THEOREM. Under the assumptions stated above, define for any), E R IV

a continuous function f; by

Then

(i) There exists a vector XE R IV such that Ix has two global best
approximations in A(S x R IV

).

(ii) If u(b, t) == u( -b, - t) and the functions j; rP, are even, then there
exists a vector IE R IV such that Ix has three global best approximations in
A(S x R IV

).

Proof 1. Zero is not a best approximation to any f i ° because
otherwise w( t) := II tu(b, . ) rP I - fl1 2 would, for all bE S, have a minimum at
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t = O. But then tP d would be orthogonal to all u(b, .), bE S, contradicting
the assumption that tPd does not vanish identically and that zero is the
only function orthogonal to all u(b, .), bE S.

2. For bE S let Je *(b) be the solution of the linear system
(u(b, . ) tPj, f;'(b)) = 0, j = 1,... , N. Then Je * exists, is uniquely determined and
depends continuously on b, because the matrix of this system is a Gramian
matrix of the linearly independent functions tPi with respect to the positive
weight function u(b,·). For any bE S the minimum of IIA(b, x) -- f;'(b)11 2

where x ranges over RN is attained for x = O.

3. Suppose that for any), E R N there exists exactly one b*(Je) E S,
such that A(b*(Je), x*) is the g.b.a. tof;. Then b* depends continuously on
;,. But then b*(R N

) is contained in a compact subinterval of S. To see this,
assume that there exists a sequence {).V} of vectors in R N such that b*(),V)
converges to + 1 or - 1 as v goes to infinity. By choosing an appropriate
subsequence if necessary, we may suppose that ), v/( 1 + liP II) converges to a
vector i ERN. If II}, VII converges to q ER u { CfJ }, then fA' converges to the
continuous function

which does not vanish identically on I. Thus Ix has a unique g.b.a.
A(b , XX) with b X E S and XX #0.

4. Thus, if the g.b.a. to any fA, is unique, the mapping b* 0 Je * is con
tinuous and maps S into a compact subset of S. It follows that b* 0 Je * has a
fixed point GE S. By construction zero would be a g.b.a. to I;.({,). This
function, however, does not vanish identically, and this is a contradiction
to part 1 of this proof. Then b* does not depend continuously on Ie and so
there exists a IER N such thath has two g.b.a. in A(SxRN

).

5. To prove (ii) we note that under the symmetry assumptions made,
A(b, x) is a g.b.a. to f; if and only if A( ~b, x) is also a g.b.a. to f;.. Now we
repeat the arguments 1 to 4 but restrict b to the interval [0, 1). It follows
that there is a XERN, such that Ix has two g.b.a. in A ([0, 1) x RN). One of
them might have b*(X) = 0, but the other one can be paired with a g.b.a. in
A(( -1,0) x RN

).

Obviously we can take for u(b, t) the kernels ChI and (1 - bt) I to obtain
results for exponential or rational approximation and thus answering
questions of Braess [1, 2].

3.4. EXAMPLE. The following example has already been considered by
Lamprecht [5J; he did however not give a rigorous proof. We consider
L 2-approximation in 9l:'n -1,1 J and choose I(t) == t 2

, ¢JJ(t) == 1. The

o-W)1.I-)
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theorem implies that there exists AE R, such that Ix = t
2

- Xhas three g.b.a.
in .Jf7[ - I, I]. A closer analysis shows that IE (~, I).

4. THE NUMBER OF CRITICAL POINTS IN RATIONAL L 2-ApPROXIMATION

It is still an open problem whether for some IE L 2 [ - I, I] the function
III- '11 2 has infinitely many (local) minima in .'ll;",. Finiteness was reported
for the case m = I in [7], but this information was based on a linguistic
translation error of a result by Spiess [6]. We parametrize .Jf?[ - I, I] by

a'u(b,') where u(b,t):=J(I-b2)/2 (I+bt) 1 is the normalized kernel.
Spiess proved that for IE L 2 [ - I, I] the critical points of NM, b) :
Ila·u(b, ·)-I(-)11 2 cannot accumulate at points (a*,b*) with b*E(-I, I).

Later Braess [I] showed that the number of critical points in .Jf? is finite
iff is continuous on [ - I, I] and I( I ) '/( -- I ) is nonzero. In this section a
much stronger result is obtained.

With the above parametrisation (a, b) is critical iff

a-(u(b),f)=O and a' (u'(b ),f) = O.

We can restrict the computations to the case a Ie 0 and thus have to prove
that (u'(b),f) has only finitely many zeros for bE(-I, 1). We obtain

au -1 b + t
-(b,t)= r- ~ .

ab J2 vi I-b2 (1 +bt)2

Thus the possible values for b are the zeros of F: ( - I, I) --> R, defined by

II t + b
F b:= . t dt

( ) 1 f ( ) (1 + bt)2

4.1. LEMMA. Let I be a continuous function on [- I, 1]. Suppose
f( - 1) Ie 0 or there exists a constant bE (0, I) such that f is monotonous in
the interval [ - I, - I + (j]. Then F: ( - 1, 1) --> R, defined by

,I. t + b
F(b):= J I f(t) (1 + bt)2 dt

has only finitely many zeros in the interval (0, 1).

Proof We may suppose I( - I) = 0 because the other case is covered by
the result of Braess in [1] cited above. F is analytic on ( - I, 1). Thus, if the
zeros of F had an accumulation point in (-1, 1), F would be identically
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zero. This cannot happen forf E L 2 [ - I, I] as has been shown by Spiess in
[6]. Suppose the zeros accumulate at I. Then, for each n = 0, 1,... a
sequence b;', i = 0, 1,... exists such that b;' -+ 1 for i -+ ::D and F(n)( bn =°for
all i, n? 0. Let K(b, I) denote the kernel

1+ h
K(h, I) := h o·

(1 + I)~

For n?°induction gives

We now split pnl(h) into two terms

and estimate roughly:

Ilf I +/(t) Kn(h, t) dIll f.rO.ll ~ Ilfll x ·llf I t,j K,,(h, I) dIll f[Oll

~ Ilfll x ·2· sup sup IKn(h,/)1
hE (0.1 ) IE [ - I + b.ll

~ 2il.1II x IKn(l, -1 + £5)1

(n + I)! .
~2 15 n + 2 /1./11

Thus we have

(n + I)! • It,)

F(")(b)~-21Ifllf 15tl+2 +L
1

f(/)Kn(b,/)dl.

Now, Kn(h, - 1) = - (n!/( 1 - h)" + I) IS less than zero and Kn(h,') has
exactly one zero in ( - I, 0), namely

1
z,,(h):= --2- (h + )(2n + If - (1 - h)).

n+2

We find zn(h) -+ -1 for h -+ 1 or n -+ ::D. We may suppose, that f increases
monotonously on [-1, -1,+15]. Thus for z,tfb)E(-I, -1 +(5) we get

r I +"f(/) Kn(h, I) dl? f(zn(b))r I +b Kn(b, I) dl.
- I I
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The integral can asymptotically be estimated by

r
I + ,I a" { <5b( I + b) ,

• I KII(b, t)dt= ah" In(l-b+()b)-ln(l-b)-I_h+6hJ

=O((I-b) ")

for fixed n;? I and b --+ I. So we obtain

,(II) . (n + 1)! . ~ ")
F (h);? -211fll, <5"+ 2 +f(-II(b)) O((I-b)

for b --+ I. Since F(II)(b;') = 0 we must have

for i--+x. This implies f(zlI(b))~O((J -b) II) for b--+ I. Because of
zlI(b» -I +(I-b)/(2n+2) this means we have f(t)=O((1 +t)") for
t --+ -I. So f( t) vanishes faster than any polynomial for t --+ -I. But then

I
, I t ,I

clI:=lim f(t)KII(b,t)dt
h .1... 1

exists for all n and this limit must be smaller than 211/11 y (n + 1)!/6" I 2 We
now show that under these circumstances F can be analytically continued
beyond b = 1 and we again obtain a contradiction to the result of Spiess.
We expand F into a series around b = 1 and show that this series has a
positive radius of convergence:

, (b -I)'" t I .

F(b):= I ! I KII(I,t)f(t)dt.
II~() n. . I

The coefficients can be estimated by

Ij" I KII(I, t)f(t) dtl = Ir I I,) + r+ I .1 ~411fllj (I~~+I/.
I .! I .... 1 + ()

Thus the series has radius of convergence at least 6.
Likewise F has only finitely many zeros in (- I, 0), provided f IS

monotonous at the right end of [ - I, 1]. Thus we obtain

4.2. THEOREM. Let f be a continuous function on [ - I, I]. Suppose that
fi)r x = + 1 and x = -I either f(x) *0 or there exists a neighbourhood U(x)
of x such that f is monotonous in U(x) n [ -1, I]. Then the function
Ilf -- '11 2 has only finitely many critiml points in 'Ji?
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